
XXI Congreso de la SPM                                                                        MACROMEX 2008 
 

 

PENG 

- 6 - 

 

POLYMER MODIFIED ASPHALTS RHEOLOGICAL PROPERTIES WAGNER MODELING 

Blanco, R1, Bonilla, J1.  Hernández-Padrón,G.2 

1  Depto de Ing. Química, Instituto Tecnológico de Estudios Superiores de Monterrey, ITESM. 
   Eugenio Garza Sada 2501, C..P. 64849, Monterrey, Nvo. León, Mèxico,  
   email:  blancorbp@gmail.com, jbonilla@itesm.mx  
 

2 Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de 
   México, Juriquilla,  Querétaro, A. P. 1-1010, Querétaro 76000, México.  
   e-mail: genoveva@unam.mx 
 

Wagner Model1 is a modification of the Lodge model2, in which the non-linear visco-elastic 

region is described through a time and strain dependent memory function,(t,.Wagner 

modified the Lodge model by representing the memory function as the product of two functions: 

the linear visco-elastic memory function (strain independent), (t),and the damping function 

(strain dependent) h().The resultant constitutive model, that is the relation between stress 

and strain, is given by the following equation: 

(t)=
0

t

 t-t')h(t,t’) (t,t’)dt'+(t)h(t)



0
t-t')dt' ……(1) 

donde:  (t)is the stress ,(t-t’) is the memory function evaluated at t-t’ 

t   is the time at which the stress or strain is being evaluated 

t’  represents all the times previous to time t  

h()is the damping function  is  the strain,  and 



0
t-t')dt'= G(t) …..(2)   

where G(t) is the linear visco-elastic relaxation modulus. Analytical solution of  equation   for the 

stress or the strain, depends on the functionality of the memory and damping functions, as well 

as on the functionality of the strain . Memory functions have been typically represented as a 

serie of exponentials (references) and is the way  they will be represented in this study. The 

functionality of the damping function has been represented in different ways. 

 h(I1 ,I2 )=1/[1+a(Ig-3)]....(3) where  Ig=I1+(1-)I2     h()=exp(-n1) by other way , it 

is possible used a double  exponential damping function as suggested by Laun3:  
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h()=f1(exp(-n1  )+(1-f1)(exp(-n2  ).....(4) 

Solution for shear response at constant strain rate 

For a situation where the strain is constant (e.g. constant shear rate at a given time), equation  

can be solved  to determine the viscosity and the  first normal stress difference. 

 

Shear Viscosity 

(t,  o)=f1
i

n




1

gi i
2
/(1+n1 i  o)

2
{1-exp[-D1t]*[1-n1i  oD1t ]} 

+(1-f1)
i

n




1

gi i
2 
/(1+n2 i  o )

2
{1- exp[-D2t]*[1-n2 i  oD2t]}..(5) 

The following diagram shows the steps followed to obtain the memory  and damping functions: 

 

 

Step 1   

  Measure the storage and loss moduli 

 (oscillatory data  using  Rheometrics  

  RAA II rheometer)  

  

          Step  3  

  Regenerate oscillatory data using 

         computer program developed by  

              this purpose 

 

Step 2 

  Obtain the relaxation spectrum ( H () ) 

  (using Rhios software, from  Rheometrics) 

 

 Step 4 

             Obtain the Relaxation Modulus (G(t))for the linear 

 viscoelastic region using  computer program developed 
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    by the author for this purpose  

      

 

Step 5 

          Obtain the Memory function ( (t) ) 

 for the linear visco-elastic region using                              

       computer program developed by the author 

by the author for this purpose  

  

 

Step 6 

Fit the Relaxation Modulus with an eight exponential function: 

     G(t)= 
i

n




1

gi exp( -t/i)and obtain the Memory  function:   

  (t)= 
i

n




1

gi i exp(- t/i)                             

 

 

Step 7  

Determine the damping function by 

fitting the experimental shear viscosity, using equation at steady state,  

setting f1=0.57 and  adjusting the values of n1 and n2 until agreement : 

t,  o)= f1
i

n




1

gi i
2 
/(1+n1 i  o 

2
 +(1- f1 )

i

n




1

gi i
2 
/( 1+n2 i  o )

2 

 

 

      

 

Step 8       Step 9    Step 10 

   Calculate the      Calculate the first       Calculate the first 
shear viscosity v.s.          normal stress        normal stress 
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versus time at several            difference versus time            difference versus time 
       shear  rates                  at steady state      at several shear  rates 
 

Flow diagram showing the procedure followed to obtain the memory and damping functions.  
 
 
 
Limiting the sums in Eq. (5) to the first three terms, the relation has a total of 9 parameters, 
which can be used to fit the experimental data. As an example, the fit for the type 3 curve, which 
is the more “complicated” one, together with the Cox–Merz and Gleissle relations is shown in 
Fig. 1.The two empirical rules fail to account for the shear-thickening behavior, and, they both 
seem to indicate a zero shear viscosity coinciding with that of Region II. Eq. (5) is able to 
describe reasonably well both the shear thickening and thinning regions. It is quite obvious that 

 

 
Fig. 1. Viscosity function for a 70/100 BA from vacuum distillation modified 
with 7% of radial SBS. Temperature = 130 °C. Experimental and calculated 
data: ■=experimental; ○=Cox-Merz; Δ=Gleissle; solid line=fit from Eq. (5). 

 
Eq.(5) with a large number of parameters, could be intrinsically able to fit the curve, but with little 
physical meaning. In this sense, it is interesting to show Fig. 2  where the “short-spectrum”, 
given by the moduli gi and relaxation times λi  calculated during the fitting procedure, is 
positioned with respect to the linear viscoelastic relaxation spectrum. It can be seen how the 
spectrum from the fit of the viscosity function falls quite precisely over the linear viscoelastic 
spectrum, exactly in the zone corresponding to the largest relaxation times. Further fitting 
examples are reported in [4,5]. 
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Fig. 2. Comparison between linear viscoelastic spectrum (□), short-spectrum from Eq. (5) (•) 
Material and conditions as described in Fig.1; the values are reported to the reference 
temperature of 0 °C by means of the WLF shifting parameters. 
 

 
 
 
 
 
 
Conclusions 
 
It is well known that all rheologists desire to correlate the knowledge of a material structure at 
the molecular level with its viscoelastic properties. At best then, a phenomenological model, 
based only on physical and measurable parameters, would be closely related to the structure of 
the material, thus providing a tool with general and predictive capabilities.Researchers working 
on the well-defined polymers still have a long way ahead to reach this goal, but this is a far 
better situation than that of scientist working on asphalts. Polymer modified asphalts are blends 
of these two materials and their study and comprehension are very important for the prediction 
of the “in life” service. When the blending leads to the formation of a polymeric network, swelled 
by the asphalt components but still maintaining the main features of its original architecture, the 
overall rheological properties basically reflect those of the polymer. During the last few decades, 
attention has primarily been paid to the linear properties of these materials. However, the 
disregarded nonlinear properties actually appear to be the most promising and prone to reveal 
the “secrets” of polymer modified asphalts. 
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